Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chin Med ; 19(1): 8, 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38212797

RESUMO

BACKGROUND: The Zhizi Chuanxiong herb pair (ZCHP) can delay pathological progression of atherosclerosis (AS); however, its pharmacological mechanism remains unclear because of its complex components. The purpose of current study is to systematically investigate the anti-AS mechanism of ZCHP. METHODS: The databases of TCMSP, STITCH, SwissTargetPrediction, BATMAN-TCM, and ETCM were searched to predict the potential targets of ZCHP components. Disease targets associated with AS was retrieved from the GEO database. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes (KEGG) signaling pathway analyses were executed using DAVID 6.8. Molecular docking method was employed to evaluate the core target binding to blood components, and animal experiments were performed to test action mechanism. RESULTS: A ZCHP-components-targets-AS network was constructed by using Cytoscape, included 11 main components and 52 candidate targets. Crucial genes were shown in the protein-protein interaction network, including TNF, IL-1ß, IGF1, MMP9, COL1A1, CCR5, HMOX1, PTGS1, SELE, and SYK. KEGG enrichment illustrated that the NF-κB, Fc epsilon RI, and TNF signaling pathways were important for AS treatment. These results were validated by molecular docking. In ApoE-/- mice, ZCHP significantly reduced intima-media thickness, pulse wave velocity, plaque area, and serum lipid levels while increasing the difference between the end-diastolic and end-systolic diameters. Furthermore, ZCHP significantly decreased the mRNA and protein levels of TNF-α and IL-1ß, suppressed NF-κB activation, and inhibited the M1 macrophage polarization marker CD86 in ApoE-/- mice. CONCLUSION: This study combining network pharmacology, molecular biology, and animal experiments showed that ZCHP can alleviate AS by suppressing the TNF/NF-κB axis and M1 macrophage polarization.

2.
Heliyon ; 9(11): e21952, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38045208

RESUMO

Background: Abnormal cardiac metabolism is a key factor in the development of cardiovascular diseases. Consequently, there has been considerable emphasis on researching and developing drugs that regulate metabolism. This study employed bibliometric methods to comprehensively and objectively analyze the relevant literature, offering insights into the knowledge dynamics in this field. Methods: The data source for this study was the Web of Science Core Collection (WoSCC), from which the collected data were imported into bibliometric software for analysis. Results: The United States was the leading contributor, accounting for 38.33 % of publications. The University of Washington and Damian J. Tyler were the most active institution and author, respectively. The American Journal of Physiology-Heart and Circulatory Physiology, Journal of Molecular and Cellular Cardiology, Cardiovascular Research, Circulation Research, and American Journal of Physiology-Endocrinology and Metabolism were highly influential journals that published numerous high-quality articles on cardiac metabolism. Common keywords in this research area included heart failure, insulin resistance, skeletal muscle, mitochondria, as well as topic words such as cardiac metabolism, fatty acid oxidation, glucose metabolism, and myocardial metabolism. Co-citation analysis has shown that research on heart failure and in vitro modeling of cardiovascular disease has gained prominence in recent years and making it a research hotspot. Conclusion: Research on cardiac metabolism is steadily growing, with a specific focus on heart failure and the interplay between mitochondrial dysfunction, insulin resistance, and cardiac metabolism. An emerging trend in this field involves the enhancement of maturation in human induced pluripotent stem cell-derived cardiomyocyte (hiPSC-CM) through the manipulation of cardiac metabolism.

3.
Medicine (Baltimore) ; 102(21): e33806, 2023 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-37233403

RESUMO

BACKGROUND: NETosis is a critical innate immune mechanism of neutrophils that contributes to the accelerated progression of autoimmune diseases, thrombosis, cancer, and coronavirus disease 2019 (COVID-19). This study qualitatively and quantitatively analyzed the relevant literature by bibliometric methods in order to provide a more comprehensive and objective view of the knowledge dynamics in the field. METHODS: The literature on NETosis was downloaded from the Web of Science Core Collection, analyzed with VOSviewer, CiteSpace, and Microsoft for co-authorship, co-occurrence, and co-citation analysis. RESULTS: In the field of NETosis, the United States was the most influential countries. Harvard University was the most active institutions. Mariana J. Kaplan and Brinkmann V were, respectively, the most prolific and most co-cited authors. Frontiers in Immunology, Journal of Immunology, Plos One, Blood, Science, Journal of Cell Biology, and Nature Medicine were the most influential journals. The top 15 keywords are associated with immunological and NETosis formation mechanisms. The keywords with the strongest burst detection were mainly related to COVID-19 (coronavirus, ACE2, SARS coronavirus, cytokine storm, pneumonia, neutrophil to lymphocyte ratio), and cancer (circulating tumor cell). CONCLUSION: Research on NETosis is currently booming. The mechanism of NETosis and its role in innate immunity, autoimmune diseases, especially systemic lupus erythematosus and rheumatoid arthritis, and thrombosis are the focus of research in the field of NETosis. A future study will concentrate on the function of NETosis in COVID-19 and recurrent metastasis of cancer.


Assuntos
Artrite Reumatoide , Doenças Autoimunes , COVID-19 , Humanos , Autoria , Bibliometria
4.
Front Immunol ; 14: 1054014, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36911738

RESUMO

DNA methylation, including aberrant hypomethylation and hypermethylation, plays a significant role in atherosclerosis (AS); therefore, targeting the unbalanced methylation in AS is a potential treatment strategy. Gualou-xiebai herb pair (GXHP), a classic herb combination, have been used for the treatment of atherosclerotic-associated diseases in traditional Chinese medicine. However, the effects and underlying mechanism of GXHP on AS remain nebulous. In this study, the CCK-8 method was applied to determine the non-toxic treatment concentrations for GXHP. The formation of foam cells played a critical role in AS, so the foam cells model was established after RAW264.7 cells were treated with ox-LDL. The contents of total cholesterol (TC) and free cholesterol (FC) were determined by Gas chromatography-mass spectrometry (GC-MS). Enzyme-linked immunosorbent assay (ELISA) was used to check the expressions of inflammatory factors including IL-1ß, TNF-α, and VCAM-1. Methyl-capture sequencing (MC-seq) and RNA-seq were applied to observe the changes in genome-wide DNA methylation and gene expression, respectively. Kyoto Encyclopedia of Genes and Genomes (KEGG) were performed to analyze differentially methylated genes (DMGs) and differentially expressed genes (DEGs). The targeted signaling pathway was selected and verified using western blotting (WB). The results showed that the lipids and inflammatory factors in foam cells significantly increased. GXHP significantly reduced the expression of TC, FC, and inflammatory factors. MC-seq and RNA-seq showed that GXHP not only corrected the aberrant DNA hypermethylation, but also DNA hypomethylation, thus restored the aberrant DEGs in foam cells induced by ox-LDL. GXHP treatment may target the PI3K-Akt signaling pathway. GXHP reduced the protein levels of phosphorylated(p)-PI3K and p-AKT in foam cells. Our data suggest that treatment with GXHP showed protective effects against AS through the inhibition of DNA methylation mediated PI3K-AKT signaling pathway, suggesting GXHP as a novel methylation-based agent.


Assuntos
Aterosclerose , Metilação de DNA , Humanos , Células Espumosas/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , RNA-Seq , Aterosclerose/metabolismo , Transdução de Sinais/genética , Colesterol/metabolismo
5.
Quant Imaging Med Surg ; 13(1): 384-393, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36620160

RESUMO

Background: To quantify the association between the free distal segment length of the internal carotid artery (FDS-ICA) and permanent cranial nerve injury (p-CNI) following carotid body tumor (CBT) resection. Methods: This study is a case-control study. We surveyed 109 consecutive patients who underwent CBT resection between June 2015 and June 2020 at our single center. A total of 89 patients met the inclusion criteria and were selected for analysis. The FDS-ICA was measured by image post-processing software for computed tomography angiography (CTA). Postoperative p-CNI complications were evaluated using comprehensive statistical approaches. Results: The cohort was divided into 2 groups depending on the presence of p-CNI, namely the p-CNI group (n=17) and the non-CNI group (n=79). The average FDS-ICA of patients with p-CNI complications was shorter than that of those without p-CNI complications (P<0.001). For every 1 mm increase in FDS-ICA, there was an associated decrease of 8% in the risk of p-CNI (0.92, 95% CI: 0.85 to 0.98, P<0.05). Threshold effect analysis of the FDS-ICA on p-CNI identified that the FDS-ICA was 28.7 (95% CI: 23.8 to 30.9) mm. Conclusions: The results of this study revealed a significant independent association between FDS-ICA and permanent postoperative cranial nerve injury complications of CBTs. Further study is warranted to confirm these results in a larger patient cohort.

6.
Medicine (Baltimore) ; 101(33): e30029, 2022 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-35984203

RESUMO

BACKGROUND: DNA methylation is a dynamically reversible form of epigenetics. Dynamic regulation plays an important role in cardiovascular diseases (CVDs). However, there have been few bibliometric studies in this field. We aimed to visualize the research results and hotspots of DNA methylation in CVDs using a bibliometric analysis to provide a scientific direction for future research. METHODS: Publications related to DNA methylation in CVDs from January 1, 2001, to September 15, 2021, were searched and confirmed from the Web of Science Core Collection. CiteSpace 5.7 and VOSviewer 1.6.15 were used for bibliometric and knowledge-map analyses. RESULTS: A total of 2617 publications were included in 912 academic journals by 15,584 authors from 963 institutions from 85 countries/regions. Among them, the United States of America, China, and England were the top 3 countries contributing to the field of DNA methylation. Harvard University, Columbia University, and University of Cambridge were the top 3 contributing institutions in terms of publications and were closely linked. PLoS One was the most published and co-cited journal. Baccarelli Andrea A published the most content, while Barker DJP had the highest frequency of co-citations. The keyword cluster focused on the mechanism, methyl-containing substance, exposure/risk factor, and biomarker. In terms of research hotspots, references with strong bursts, which are still ongoing, recently included "epigenetic clock" (2017-2021), "obesity, smoking, aging, and DNA methylation" (2017-2021), and "biomarker and epigenome-wide association study" (2019-2021). CONCLUSIONS: We used bibliometric and visual methods to identify research hotspots and trends in DNA methylation in CVDs. Epigenetic clocks, biomarkers, environmental exposure, and lifestyle may become the focus and frontier of future research.


Assuntos
Pesquisa Biomédica , Doenças Cardiovasculares , Bibliometria , Biomarcadores , Doenças Cardiovasculares/genética , Metilação de DNA , Humanos , Estados Unidos
7.
Front Cardiovasc Med ; 9: 941607, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35903667

RESUMO

Background: Emerging evidence has linked gut microbiota (GM) and its related metabolites to atherosclerosis (AS). This study aimed to analyze the evolution of GM in AS in the past decades, and provide valuable insights in this field. Methods: Web of Science Core Collection (WoSCC) was applied to retrieve the publications related to GM in AS from their inception until 2 December 2021, and the data was analyzed in Microsoft Excel, Scimago Graphica, CiteSpace, and VOSviewer. Results: In total, 560 documents were extracted from the WoSCC databases. The publications have shown rapid growth since 2008. China and Cleveland Clin were the most prolific country and institution, respectively. The journal with the most publications is Nutrients, and Nature was the most co-cited journal. Among 3556 related authors, Hazen, Stanley L., Tang, W. H. Wilson, and Wang, Zeneng were the top 3 contributing authors in this field. Aside from "gut microbiota," "atherosclerosis," the terms "TMAO," "metabolite," "obesity," and "phosphatidylcholine" were frequently occurred in the abstract and title of articles. Burst detection of keywords indicated that "metabolic syndrome," "acid," and "bile acid" were hot topics in recent years. According to the co-citation analysis of references, the research focus in this area has changed over time, and recent researches focus on choline, hypertension, butyrate, and berberine. Conclusion: Our study showed that the researches of GM in AS have been flourishing, and the content themes were constantly deepened. Human GM is critical to atherosclerotic diseases, and this hot topic is still worthy of more focus in the future.

8.
J Inflamm Res ; 15: 163-176, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35035227

RESUMO

PURPOSE: To investigate if a traditional Chinese medicine formulation, called "Yiqihuoxue" (YQHX), could improve diabetic atherosclerosis (DA) and explore potential mechanisms based on DNA methylation. METHODS: Apolipoprotein E-knockout mice were administered streptozotocin (50 mg/d, i.p.) for 5 days and fed a high-fat diet for 16 weeks. Mice were divided randomly into DA model, rosiglitazone, as well as low-, medium-, and high-dose YQHX groups. Ten healthy C57BL/6J mice were the control group. Serum levels of fasting insulin, blood glucose, homeostasis model-insulin resistance index (HOMA-IR), serum lipids, and inflammatory factors were analyzed after the final treatment. Aorta tissues were collected for staining (hematoxylin and eosin, and Oil red O). Genomic DNA was extracted for methyl-capture sequencing (MC-seq). Kyoto Encyclopedia of Genes and Genomes (KEGG) and Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) databases were used to analyze differentially methylated genes. Pyrosequencing was used to verify MC-seq data. RESULTS: Low-dose and high-dose YQHX could reduce the HOMA-IR (P < 0.05). Low-dose YQHX reduced expression of total cholesterol (TC), low-density lipoprotein-cholesterol (LDL-C), TNF-α, andI L-6 in serum compared with that in the model group (P < 0.05). Medium-dose YQHX decoction inhibited the expression level of TNF-α (P < 0.05). High-dose YQHX decreased the expression level of IL-6 (P < 0.05). Staining also showed the anti-atherosclerosis effects of YQHX (P < 0.05). MC-seq revealed many abnormally hypermethylated and hypomethylated genes in DA mice compared with those in the control group. KEGG database analysis showed that the hypermethylated genes induced by YQHX treatment were related to pathways in cancer, Hippo signaling, and mitogen activated protein kinase. The network analysis suggested that the hypermethylated genes epidermal growth factor receptor(Egfr) and phosphoinositide-3-kinase regulatory subunit 1(Pik3r1) induced by YQHX treatment had important roles in DA. Pyrosequencing revealed that YQHX treatment increased methylation of AKT1, Nr1h3 and Fabp4 significantly (P < 0.05). CONCLUSION: YQHX decoction had positive treatment effects against DA, because it could regulate aberrant hypomethylation of DNA.

9.
World J Gastroenterol ; 27(24): 3609-3629, 2021 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-34239273

RESUMO

BACKGROUND: Gut microbiota and its metabolites may be involved in the pathogenesis of inflammatory bowel disease. Several clinical studies have recently shown that patients with ulcerative colitis (UC) have altered profiles of fecal bile acids (BAs). It was observed that BA receptors Takeda G-protein-coupled receptor 5 (TGR5) and vitamin D receptor (VDR) participate in intestinal inflammatory responses by regulating NF-ĸB signaling. We hypothesized that altered profiles of fecal BAs might be correlated with gut microbiota and inflammatory responses in patients with UC. AIM: To investigate the changes in fecal BAs and analyze the relationship of BAs with gut microbiota and inflammation in patients with UC. METHODS: The present study used 16S rDNA sequencing technology to detect the differences in the intestinal flora between UC patients and healthy controls (HCs). Fecal BAs were measured by targeted metabolomics approaches. Mucosal TGR5 and VDR expression was analyzed using immunohistochemistry, and serum inflammatory cytokine levels were detected by ELISA. RESULTS: Thirty-two UC patients and twenty-three HCs were enrolled in this study. It was found that the diversity of gut microbiota in UC patients was reduced compared with that in HCs. Firmicutes, Clostridium IV, Butyricicoccus, Clostridium XlVa, Faecalibacterium, and Roseburia were significantly decreased in patients with UC (P = 3.75E-05, P = 8.28E-07, P = 0.0002, P = 0.003, P = 0.0003, and P = 0.0004, respectively). Proteobacteria, Escherichia, Enterococcus, Klebsiella, and Streptococcus were significantly enriched in the UC group (P = 2.99E-09, P = 3.63E-05, P = 8.59E-05, P = 0.003, and P = 0.016, respectively). The concentrations of fecal secondary BAs, such as lithocholic acid, deoxycholic acid, glycodeoxycholic acid, glycolithocholic acid, and taurolithocholate, in UC patients were significantly lower than those in HCs (P = 8.1E-08, P = 1.2E-07, P = 3.5E-04, P = 1.9E-03, and P = 1.8E-02, respectively) and were positively correlated with Butyricicoccus, Roseburia, Clostridium IV, Faecalibacterium, and Clostridium XlVb (P < 0.01). The concentrations of primary BAs, such as taurocholic acid, cholic acid, taurochenodeoxycholate, and glycochenodeoxycholate, in UC patients were significantly higher than those in HCs (P = 5.3E-03, P = 4E-02, P = 0.042, and P = 0.045, respectively) and were positively related to Enterococcus, Klebsiella, Streptococcus, Lactobacillus, and pro-inflammatory cytokines (P < 0.01). The expression of TGR5 was significantly elevated in UC patients (0.019 ± 0.013 vs 0.006 ± 0.003, P = 0.0003). VDR expression in colonic mucosal specimens was significantly decreased in UC patients (0.011 ± 0.007 vs 0.016 ± 0.004, P = 0.033). CONCLUSION: Fecal BA profiles are closely related to the gut microbiota and serum inflammatory cytokines. Dysregulation of the gut microbiota and altered constitution of fecal BAs may participate in regulating inflammatory responses via the BA receptors TGR5 and VDR.


Assuntos
Colite Ulcerativa , Microbioma Gastrointestinal , Ácidos e Sais Biliares , Fezes , Humanos , Intestinos
10.
IEEE Trans Neural Netw Learn Syst ; 28(6): 1439-1451, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28534753

RESUMO

This paper presents a new approach to construct neural adaptive control for uncertain nonaffine systems. By integrating locally weighted learning with barrier Lyapunov function (BLF), a novel control design method is presented to systematically address the two critical issues in neural network (NN) control field: one is how to fulfill the compact set precondition for NN approximation, and the other is how to use varying rather than a fixed NN structure to improve the functionality of NN control. A BLF is exploited to ensure the NN inputs to remain bounded during the entire system operation. To account for system nonlinearities, a neuron self-growing strategy is proposed to guide the process for adding new neurons to the system, resulting in a self-adjustable NN structure for better learning capabilities. It is shown that the number of neurons needed to accomplish the control task is finite, and better performance can be obtained with less number of neurons as compared with traditional methods. The salient feature of the proposed method also lies in the continuity of the control action everywhere. Furthermore, the resulting control action is smooth almost everywhere except for a few time instants at which new neurons are added. Numerical example illustrates the effectiveness of the proposed approach.

11.
IEEE Trans Neural Netw Learn Syst ; 28(11): 2614-2625, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28113641

RESUMO

The "universal" approximating/learning feature of neural network (NN), widely and extensively used for control design, is contingent upon some critical conditions, either of which, if not satisfied, would render such feature vanished. In this paper, we show that these conditions are literally linked with several fundamental issues that have been overlooked in most existing NN-based control designs, either unconsciously or deliberately. We further propose a collective approach to explicitly address these issues, establishing a strategy enabling the NN unit to be fully functional in the control loop during the entire process of system operation and ensuring the more reliable and more effective NN-associated control performance. This is achieved by incorporating the control with a new structural NN unit, consisting of a group of diversified neurons with self-adjusting subneurons, each being driven/stimulated by input signals confined within a compact set. Meanwhile, the continuity of the control signal and the boundedness of all the closed-loop signals are ensured. Both the theoretical analysis and numerical simulation validate the effectiveness of the proposed method.The "universal" approximating/learning feature of neural network (NN), widely and extensively used for control design, is contingent upon some critical conditions, either of which, if not satisfied, would render such feature vanished. In this paper, we show that these conditions are literally linked with several fundamental issues that have been overlooked in most existing NN-based control designs, either unconsciously or deliberately. We further propose a collective approach to explicitly address these issues, establishing a strategy enabling the NN unit to be fully functional in the control loop during the entire process of system operation and ensuring the more reliable and more effective NN-associated control performance. This is achieved by incorporating the control with a new structural NN unit, consisting of a group of diversified neurons with self-adjusting subneurons, each being driven/stimulated by input signals confined within a compact set. Meanwhile, the continuity of the control signal and the boundedness of all the closed-loop signals are ensured. Both the theoretical analysis and numerical simulation validate the effectiveness of the proposed method.

12.
Molecules ; 21(11)2016 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-27886092

RESUMO

1-Deoxynojirimycin (DNJ, C6H13NO4, 163.17 g/mol), an alkaloid azasugar or iminosugar, is a biologically active natural compound that exists in mulberry leaves and Commelina communis (dayflower) as well as from several bacterial strains such as Bacillus and Streptomyces species. Deoxynojirimycin possesses antihyperglycemic, anti-obesity, and antiviral features. Therefore, the aim of this detailed review article is to summarize the existing knowledge on occurrence, extraction, purification, determination, chemistry, and bioactivities of DNJ, so that researchers may use it to explore future perspectives of research on DNJ. Moreover, possible molecular targets of DNJ will also be investigated using suitable in silico approach.


Assuntos
1-Desoxinojirimicina/administração & dosagem , 1-Desoxinojirimicina/isolamento & purificação , Bacillus/química , Morus/química , Streptomyces/química , 1-Desoxinojirimicina/química , 1-Desoxinojirimicina/farmacologia , Fármacos Antiobesidade/administração & dosagem , Fármacos Antiobesidade/isolamento & purificação , Fármacos Antiobesidade/farmacologia , Antivirais/administração & dosagem , Antivirais/isolamento & purificação , Antivirais/farmacologia , Cromatografia Líquida de Alta Pressão , Humanos , Hipoglicemiantes/administração & dosagem , Hipoglicemiantes/isolamento & purificação , Hipoglicemiantes/farmacologia , Estrutura Molecular , Folhas de Planta/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...